Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhong-Lu You

Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail:
youzhonglu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.091$
Data-to-parameter ratio $=18.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

\{4-Bromo-2-[(2-diethylaminoethylimino)methyl]phenolato\}thiocyanatocopper(II)

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}\right)(\mathrm{NCS})\right]$, is a mononuclear Schiff base copper(II) complex. The $\mathrm{Cu}^{\text {II }}$ atom is coordinated by one O and two N atoms of the Schiff base ligand, and by one N atom of the thiocyanate ligand, forming a square-planar coordination.

Comment

Recently, we have reported a series of Schiff base complexes (You, 2005a,b,c). As an extension of this work on the structural characterization of Schiff base complexes, we describe here the synthesis and structure of the title new copper(II) compound, (I).

(I)

The molecular structure of compound (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. Compound (I) is structurally similar to the copper(II) compounds reported recently (You, 2005d,e). The $\mathrm{Cu}^{\mathrm{II}}$ atom is four-coordinated, in a square-planar arrangement, by one O and two N atoms of the Schiff base ligand, and by one N atom of the thiocyanate anion. The values of the trans angles in the CuON_{3} square plane are 176.48 (12) and $176.09(10)^{\circ}$, indicating a slightly distorted square-planar coordination. The $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond lengths (Table 1) are comparable with the corresponding values observed in other Schiff base copper(II) complexes (You \& Zhu, 2004) and, as expected, the

Figure 1
The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
The crystal packing of compound (I), viewed along the a axis.
bond involving amine atom N 2 is longer than that involving imine atom N 1 (Mondal et al., 2001).

In the crystal structure, the molecules stack along the a axis; the crystal packing is shown in Fig. 2.

Experimental

5-Bromosalicylaldehyde ($0.1 \mathrm{mmol}, \quad 20.1 \mathrm{mg}$) and N, N^{\prime}-diethyl-ethane-1,2-diamine ($0.1 \mathrm{mmol}, 11.6 \mathrm{mg}$) were dissolved in MeOH $(10 \mathrm{ml})$. The mixture was stirred at room temperature for 20 min to give a yellow solution. To this solution were added an aqueous solution (2 ml) of $\mathrm{NH}_{4} \mathrm{NCS}(0.1 \mathrm{mmol}, 6.5 \mathrm{mg})$ and a MeOH solution $(3 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$, with stirring. The mixture was stirred for a further 20 min at room temperature and then filtered. The filtrate was kept in air for 5 d , during which time blue block-shaped crystals of (I) were formed.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}\right)(\mathrm{NCS})\right]$	$D_{x}=1.726 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=419.82$	Mo K α radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 3328
$a=7.052(1) \AA$	reflections
$b=16.688(2) \AA$	$\theta=2.4-24.6^{\circ}$
$c=13.775(2) \AA$	$\mu=3.96 \mathrm{~mm}^{\circ} \AA$
$\beta=94.79(1)^{\circ} \AA$	$T=298(2) \mathrm{K}$
$V=1615.4(4) \AA^{3}$	Block, blue
$Z=4$	$0.25 \times 0.18 \times 0.17 \mathrm{~mm}$

[^0]
Data collection

Bruker SMART CCD area-detector	3564 independent reflections
diffractometer	2787 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.031$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996$)$	$h=-8 \rightarrow 9$
$T_{\min }=0.404, T_{\max }=0.510$	$k=-21 \rightarrow 21$
11427 measured reflections	$l=-16 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.091$
$S=1.03$
3564 reflections
192 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0453 P)^{2}\right. \\
& +0.4325 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.54 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.41 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.902(2)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$1.938(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.928(3)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.103(2)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$92.93(9)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$176.09(10)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$89.52(11)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$84.27(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$176.48(12)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$93.41(11)$

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The author thanks Liaoning Normal University, People's Republic of China, for funding this study.

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Mondal, N., Mitra, S., Gramilich, V., Ghodsi, S. O. \& Malik, K. M. A. (2001). Polyhedron, 20, 135-141.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
You, Z.-L. (2005a). Acta Cryst. E61, m1571-m1573.
You, Z.-L. (2005b). Acta Cryst. E61, m1601-m1603.
You, Z.-L. (2005c). Acta Cryst. E61, m1637-m1638.
You, Z.-L. (2005d). Acta Cryst. E61, m2226-m2227.
You, Z.-L. (2005e). Acta Cryst. E61, m1963-m1964.
You, Z.-L. \& Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754-2760.

[^0]: $D_{x}=1.726 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 3328

 - 4.4 . $^{\circ}$
 $\mu=3.96 \mathrm{~mm}^{-1}$
 $T=298$ (2) K
 $0.25 \times 0.18 \times 0.17 \mathrm{~mm}$

